Ubuntu 16.04 Server에서 CUDA 9.0 + CUDNN 7.1 _ Anaconda 설치
설치순서
1. CUDA
2. CUDNN
3. Anaconda
설치하시기 전에 버전확인 먼저 하시고 설치
최신버전 추가
1. CUDA 9.0 설치
local version
파일을 다운받아서 하는 방법이다.
patch 파일도 cuBLAS관련해서 세개나 있어서 각각 업데이트 해줘야 한다.
#본 파일
cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
#패치 파일
cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-3_1.0-1_amd64.deb
cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64.deb
cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64.deb
본설치
$ sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get install cuda
패치 적용
$ sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64.deb
$ sudo apt-get update
$ sudo apt-get upgrade cuda-9-0
$ sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64.deb
$ sudo apt-get update
$ sudo apt-get upgrade cuda-9-0
$ sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-3_1.0-1_amd64.deb
$ sudo apt-get update
$ sudo apt-get upgrade cuda-9-0
1.1.Ubuntu 18.04(CUDA 11.0)
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt-get update
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-11-0 \
libcudnn8=8.0.4.30-1+cuda11.0 \
libcudnn8-dev=8.0.4.30-1+cuda11.0
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install TensorRT. Requires that libcudnn8 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer7=7.1.3-1+cuda11.0 \
libnvinfer-dev=7.1.3-1+cuda11.0 \
libnvinfer-plugin7=7.1.3-1+cuda11.0
# Add NVIDIA package repositories
# Add HTTPS support for apt-key
sudo apt-get install gnupg-curl
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-ubuntu1604.pin
sudo mv cuda-ubuntu1604.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/ /"
sudo apt-get update
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt-get update
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt-get update
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-11-0 \
libcudnn8=8.0.4.30-1+cuda11.0 \
libcudnn8-dev=8.0.4.30-1+cuda11.0
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends \
libnvinfer7=7.1.3-1+cuda11.0 \
libnvinfer-dev=7.1.3-1+cuda11.0 \
libnvinfer-plugin7=7.1.3-1+cuda11.0 \
libnvinfer-plugin-dev=7.1.3-1+cuda11.0
2. CUDNN v7.4.2 설치
https://developer.nvidia.com/cudnn
로그인 후 버전에 맞는 CUDNN 다운로드
$ sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-3_1.0-1_amd64.deb
$ sudo apt-get update
$ sudo apt-get upgrade cuda-9-0
$ tar xvzf cudnn-9.0-linux-x64-v7.4.2.24.solitairetheme8
$ sudo cp -p cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp -p cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
$ sudo apt-get install libcupti-dev
$ vi ~/bashrc
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
$ source ~/.bashrc
$ nvcc --version
3. Anaconda 3 설치
https://www.anaconda.com/download/
$ chmod +x Anaconda3-2018.12-Linux-x86_64.sh
$ bash Anaconda3-2018.12-Linux-x86_64.sh
$ source ~/.bashrc
$ conda list
'Artificial Intelligence > Natural Language Processing' 카테고리의 다른 글
Ubuntu 16.04 Server 에서 NVIDIA Driver 설치 (0) | 2019.01.30 |
---|---|
Mecab-ko 설치하기 (0) | 2018.10.04 |